AP PSYCHOLOGY Dr. Paul L. Bailey Activity 0831 Tuesday, August 31, 2021 Name:

Problem 1. Copy the sketch of the neuron, as projected. Then, label parts A, B, C, and D.

Problem 2. Consider the periodic table below.

1 IA 1A	Periodic Table of the Elements																18 VIIIA 8A
1 1.008 Hydrogen 13 ³ 8.041	2 IIA 2A	r						Atomic Number	Atomic Mass			13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	2 4.003 He Helium 15 ²
3 8341 Lithium 11 22.990	4 Be Beryllium (Hel25 ² 12 24.306							Na	nbol ame configuration			5 B Boron Heito ² 20 ¹ 13 28.982	6 Carbon PH(29 ² 29 ² 14 28:000	7 Nitrogen	8 0 0xygen He(2x ² 2y ⁴ 16 32.066	9 Fluorine Pk(2s ² 2p ⁵ 17 35.453	10 20.180 Neon (Heijzh ² /29 ⁶) 18 30.948
		3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8		10	11 IB 1B	12 IIB 2B	Aluminum Nel3n ² 3p ¹	Silicon	Phosphorus	S Sulfur Ne(3a ² 3p ⁴	Cliorine IMe(3x ² 3p ⁵	Argon Ne(Sk23p ⁶
19 30.006 K Potassium (Acts)	20 40.078 Ca Calcium	21 44.995 Scandium (A(30 ¹ 45 ²)	22 47.88 Ti Titanium (4/34 ² 45 ²	23 0.942 V Vanadium (A634 ³ 45 ²	24 51.995 Cr Chromium _{J4(34} 545 ¹	25 54.938 Mn Manganese (41)35 ⁵⁴⁵²	26 55.85 Fe Iron (A634765 ²	27 58.003 Cobalt (4/30 ⁷ 62 ²	28 58.000 Nickel (41)38 ⁹ 45 ²	29 Cu Copper (4(134 ¹⁰ 41 ¹)	30 05.38 Zn _{(Ac)3d} ^{104,2}	31 68.723 Ga Gallium (Ac(34 ¹⁰ 46 ² 46 ¹)	32 72.631 Ge Germanium (A(3)d ¹⁰ 45 ² 49 ²	33 74.022 Assenic [4(3d) ^{10,4} 9 ² 4p ³	34 78,971 Se Selenium (A(34 ³⁰ 46 ² 46 ⁴	35 78.004 Bromine (At(3d ¹⁰ 65 ² 4p ⁵)	36 84.796 Krypton M(34 ^{1045/240⁶}
37 84.468 Rb Rubidium	38 87.62 Sr Strontium (R)55 ²	39 Y Yttrium _{(ki)4d} ^{58,006}	40 91.224 Zr Zirconium (6)46/2552	41 92.000 Niobium (0)44 ⁴ 55 ¹	42 95.95 Mo Molybdenum (K)4d ⁵ 55 ¹	43 TC Technetium (0)43 ⁵ 53 ²	44 101.07 Ru Ruthenium (6(43 ⁷ 51 ¹	45 102.006 Rh Rhodium (Ki)40 ⁸ 55 ¹	46 106.42 Pd Palladium Kidd ¹⁰	47 107.888 Ag Silver (R)43 ¹⁰ 51	48 112.414 Cd Cadmium ₃₀₍₄₄ 36552	49 114.818 In Indium ₍₀₂₎₄₄ 195 ₅₂ 5 ₅₁ 1	50 118.711 Sn Tin 9014415525p2	51 121.700 Sb Antimony (Ri)51 ¹⁰⁵ 52 ² 59 ³	52 127.6 Te 10141 1936 2564	53 128.904 I Iodine 94048 ¹⁰ 5s ² 5p ⁵	54 ^{131 249} Xeon _{R0/64¹⁰56²59⁶}
55 132,905 CS Cesium (xujos ¹	56 137.328 Ba Barium	57-71	72 178.49 Hf Hafnium Xx(81 ¹⁴ 5d ² cx ²	73 180.948 Ta Tantalum (36)61 ⁴⁵ 54 ³ 62 ²	74 183.84 W Tungsten (Xe)# ¹⁴ 5d ⁴ 62 ²	75 185.207 Re Rhenium (%)41 ⁴ 5d ⁵ 64 ²	76 190.23 Osmium (36)4 ¹⁴ 5d ⁶ 0s ²	77 102.217 Ir Iridium (Xe)41 ¹⁶ 54 ⁷ 64 ²	78 195.085 Pt Platinum (56)41 ¹⁴ 54 ² 64 ¹	79 196.967 Au Gold (Xe(41 ⁴ 5d ¹⁰ 5d ¹	80 200.592 Hg Mercury (56)41 ⁶⁴ 5d ¹⁰ 62 ²	81 204.343 TI Thallium (Xe)41 ¹⁴ 5d ¹⁰ 6s ² 6p ¹	82 2072 Pb Lead (Xe/H ¹⁴ 5d ¹³ 6d ² 6d ²	83 208.990 Bi Bismuth (xe)el ¹⁴ 5d ¹⁰ 6c ² 6p ³	84 [206.962] PO Polonium (Xe)41 ⁹⁴ 5d ¹⁰ 62 ² 62 ⁴	85 200.567 At Astatine (Xe)41 ¹⁴ 54 ³⁰ 56 ² 6p ⁵	86 222.018 Rn Radon (xe(e) ¹⁴ 5d ¹⁰ 6c ² 6p ⁶
87 223.020 Fr Francium	88 226.025 Ra Radium (96/21 ²	89-103	104 [261] Rf Rutherfordium [Rej5/146d ² 3/2 ²¹	105 [292] Db Dubnium [9051 ⁽¹⁴ 64 ³ 52 ²¹	106 [200] Seaborgium 813/3 ⁽¹ 56 ⁴ 71 ²)	107 (264) Bh Bohrium (Ne(5(¹⁴ 66 ⁴ 5) ²¹)	108 [209] Hs Hassium	109 [200] Mt Meitnerium (N)54 ¹⁴ 66 ² 32 ²	110 (200) DS Darmstadtium (Mijsi ¹⁴ 6d ⁰)x ²⁴	111 [272] Roentgenium [http://doi/10.21	112 [277] Copernicium (hr(5) ¹⁴ 6d ¹⁰ /h ²¹	113 urknown Uut Ununtrium (Nr(3146d10)22/p1*	114 Fl Flerovium (%)5/ ¹⁴ 60 ¹⁰ 27 ² 72 ²¹	115 unknown Uup Ununpentium (kajsi1464355,2355	116 [298] Lv Livermorium (%(51 ⁴⁶ d ¹⁰)s ² /p ^{4*}	117 unknown Uuus Ununseptium (%)(1 ⁴ 64 ¹⁰ 7),275 ²⁵	118 unkrown Uuuo Ununoctium Impg19 ¹⁴ 6d ¹⁰ 7/27p ^{0*}
	Lanthanide Series Series																
	Actinide Series Confurs, Proceeding Proceeding Proceeding Series S																

© 2015 Todd Helmenstine sciencenotes.org

Draw the election shell structure of the following atoms. State the valence.

(a) H Hydrogen

(b) O Oxygen

(c) Mg Magnesium

(d) Cl Chlorine